
Initial Architecture Document
Team Number: 11

Team Members: Alexander Archer, Aditi Darade, Daniel Ginsberg, Jarrod Grothusen, Andrew
Macgillivray

Project Name: Linear Algebra Accelerator

Project Synopsis: FPGA-based accelerator-card design for linear algebra operations using
RISC-V with the RVV extension, packaged with a daemon-style access controller/scheduler for
the host system.

Architecture:

Our project consists of four components: the RISC-V based accelerator card, implemented on
an FPGA; a “Daemon” that acts as an access controller by taking requests into a queue and
running them on the accelerator; a library of helper functions that user-defined programs can
include and use to send requests to the daemon and receive output; and a number of
user-defined programs examples, used as a test suite. Moving through these components in
reverse helps to explain the purpose of our project. The diagram below shows the general
outline of our project, and the separation between what we call the “Linear Algebra Accelerator”
(the FPGA, daemon, and library) versus the user-defined programs that will request to use the
Linear Algebra Accelerator. Note that “Linear Algebra Accelerator” may be abbreviated as
“LA2”.

We begin with user-defined programs, which are any programs written by a
(hypothetical) third party. This splits further into two sets of user programs: 1) those that use
linear algebra operations and are compiled to run on our RISC-V architecture, and 2) any 3rd
party programs that send requests to run a RISC-V compatible program on the accelerator. The
finer details of both are going to depend on the format that we require programs to be in when
sent, which will vary based on our final FPGA implementation. In general, a container program
(type 2) will include the Linear Algebra Accelerator library, which it will use to send information



about a type-1 program to the Daemon. The Type 2 program will then wait for its request to be
handled, and collect the output of the type-1 program when it has been calculated on the FPGA
and sent back via the daemon.

Next, we have the user library. We plan for the user library to contain a small number of
functions (perhaps even a single function) that, when called, generate an appropriately
formatted message and send it to the Daemon process through a specific socket or queue. The
daemon will ingest the message, add it to the queue, execute it on the accelerator in as soon as
possible, and return the results through an output queue or a socket with a predetermined
naming convention that the user program can anticipate at runtime. Once the output is returned
by the function call, the data is ready to use. The library may be expanded to support more than
just requests (by adding
debugging functions, requests for
FPGA information, etc).

The Daemon layer,
accessed using the functions in
the user library, is somewhat
complex. It keeps a virtual
representation of the accelerator
card and its status (idle, in use,
etc), to help schedule requested
jobs, and tracks all of the information necessary to start a job and return its results to the
process that sent the request. Like a standard daemon, this will be a compiled program that is
called every time the host system starts up, and runs as long as the FPGA is connected. If we
are able, we may also allow it to handle different types of requests, such as requests for
information about the FPGA (e.g. maximum ram available to a program, number of cores, etc).

Finally, the FPGA layer is where the accelerator will be implemented. We will use VHDL
to describe each component of our core, then lay it together so that it supports basic RISC-V
instructions as well as those from the RVV ISA extension. The FPGA will be programmed to
have as many of these cores as we can possibly fit (limited by the resources of the FPGA).
Then, we will have to figure
out the best way to load
programs into memory for
execution - we would prefer
to find a method for
bare-metal execution, but
may resort to using a small
OS or similar solution tool.

The resulting architecture
will look something like the
diagram to the right. “Lib” is
a function library and/or



single header that includes a file that users can access and use to interact with the Daemon.
The functions in lib abstract away the complexity of formatting messages and sending/receiving
through the Daemon’s sockets. Below the “Lib”, the diagram shows two user programs: a
container program - the one that uses “Lib” to talk to the daemon - as well as the program
compiled for our RISC-V architecture that includes the linear algebra operations to be executed
on the accelerator. The container program uses Lib to forward the details of the linear-algebra
program to the Daemon. The daemon ingests the message and, when ready, forwards the
program to the FPGA, where it executes. The output is returned from the FPGA to the Daemon,
which uses some tracking object or struct to identify the request to which the data belongs to
and calculate the time elapsed from the request was first received until the output was returned
to the user program. Logs of the requests and output may also be stored for future analysis.

Once all of the parts are completed, we plan to collect timing information so that we can
compare our accelerator card to execution on a typical consumer-grade or workstation CPU.
Using this timing information, we will look for opportunities to improve our chip design and
software architecture to maximize performance. The results of that analysis and any
optimizations will be recorded within the project’s documentation. Ideally, we will be able to
show that the chip provides a noticeable improvement in the execution of linear-algebra related
programs compared to standard hardware. We may also rank our project against existing
products such as the SiFive x280, if performance metrics for those products are readily
available. While we wouldn’t expect to outperform a polished, market-ready product, it would
provide interesting insight into the quality of our work and ways that our project could be
improved in the future. The project will also be published on GitHub under an open-source
license, to help others learn the basics of FPGA implementations and allow any of our group
members to extend the project in the future if we so desire.


